What is the mechanism for the conversion of A to B?
What are the structures of the intermediate I, C and D?

What is the mechanism for the conversion of A to B?
What are the structures of the intermediate I, C and D?

Diels-Alder reaction

What is the structure of the intermediate I?

What are the structures of C and D?

Diels-Alder reaction

Aromatic Compounds and Aromaticity
Why does A show an absorption at 330 nm whereas B does not? Why does A show an absorption at 330 nm whereas B does not?

Which transition, A or B, is more probable? (i.e. the intensity of absorption)

What are the orbitals involved in these transitions?

Absorptions are characterized by two properties. One is the wavelength of the maximum absorption (color).

Absorptions are characterized by two properties. One is the wavelength of the maximum absorption (color) and its intensity (ε).

Which compound, A or B, would absorb the longest wavelength of light?

Absorptions are characterized by two properties. One is the wavelength of the maximum absorption. Are these ovals (A) the same color or (B) different colors?

Absorptions are characterized by two properties. One is the wavelength of the maximum absorption. Are these ovals (A) the same color or (B) different colors?

Which compound, A or B, would absorb the longest wavelength of light?

crotonaldehyde

colorless

crotonaldehyde

orange

transition probability = molar absorptivity (ε) = absorption (A) absorption (A)
concentration (C) x length (l) concentration (C) x length (l)

ε = 11,540

ε = 26

ε = 11,540

ε = 26
Two excited states are possible. Which of these is lower in energy?

Why is the triplet state (T_1) lower in energy than the singlet state (S_1)?

Why is the triplet state (T_1) lower in energy than the singlet state (S_1)?

What is the major product of the following reaction?

What is the mechanism for its formation?
What is the second product?

\[CH_2=CH_2 + H-Br \rightarrow CH_2=CHBr \rightarrow CH_2=CH-Br \rightarrow ? \]

A: Br, B: Br, C: Br, D: Br, E: Br

80\% 20\%

How is it formed?

\[CH_2=CH_2 + H-Br \rightarrow CH_2=CHBr \rightarrow CH_2=CH-Br \rightarrow ? \]

A: Br, B: Br, C: Br, D: Br, E: Br

80\% 20\%

Heating the minor product of the addition reaction results in a small amount of the major product.

Heating the major or minor products of the reaction results in the same reaction mixture! Why?

Which compound is more stable? Why?

A: Br 80\% 20\%
B: Br

If A is more stable why is it not the major product of the reaction?

A: Br 80\% 20\%
B: Br

If A is more stable why is it not the major product of the reaction?
Is the activation energy for the formation of 2 greater (A) or less (B) than the formation of 1?

What is the major product (A or B) if the reaction is performed at 40°?