Nomenclature and Conformational Analysis

Nomenclature

The formal system of nomenclature used today is one proposed by the International Union of Pure and Applied Chemistry (IUPAC). The fundamental principle of IUPAC system is: *Each different compound should have an unambiguous name.* The details are discussed in section 4.3 in the textbook.

What is conformational analysis?

Groups bonded by only a sigma (\(\sigma \)) bond (i.e., by a single bond) can undergo rotation about that bond with respect to each other. The temporary molecular shapes that result from rotation of groups about single bonds are called *conformations* of a molecule. Each possible structure is called a *conformer*. An analysis of the energy changes associated with a molecule undergoing rotation about single bonds is called *conformational analysis*.

Why study conformational analysis?

Conformational analysis is important because the structure of a molecule can have a significant influence on the molecular properties, including dictating the outcome of a reaction. Although the ideas are developed for the simplest functional groups, the alkanes, the same principles can be expanded and applied to other functional groups.

1. Consider the following haloalkane. Build this using your model kit if you have one.

 ![Haloalkane](image)

 a) Give a correct IUPAC name.

 b) Draw the three staggered and three eclipsed conformations that arise from rotation about the indicated C-C bond, using Newman projections. Label them as 1-6.

 c) Perform a conformational analysis by sketching a curve showing the relative energy differences between each of your six conformations, labeling all energy maxima and minima with your labels (1-6). You do not need to determine actual numerical energy values.

 d) Draw a Sawhorse projection, using wedges and dashes, of the most stable conformer.

2. Give a correct IUPAC name for the following bicyclic alkanes.

 ![Bicyclic Alkanes](image)
3. Your TA will select one of these four structures below for your group to use for this problem.

a.

b.

c.

d.

Propose a synthesis for your compound using reactants containing four carbon atoms or less and the library of synthetic reactions (see below).

<table>
<thead>
<tr>
<th>Structure</th>
<th>Reaction 1</th>
<th>Reaction 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C} \equiv \text{C})</td>
<td>(\Theta \text{OH})</td>
<td>(\text{C} \equiv \text{C})</td>
</tr>
<tr>
<td>(\text{C} - \text{Br})</td>
<td>Li</td>
<td>C-Li</td>
</tr>
<tr>
<td>(\text{C} - \text{Br})</td>
<td>Li</td>
<td>C-Li</td>
</tr>
</tbody>
</table>

Here is an example of the organolithium reaction shown above. Labels a and b are there to help you see where the carbon atoms in the reactants are located in the product. Notice that the carbonyl compound (second reactant) is the \(\text{C}=\text{O} \) molecule represented in the box above. The reaction between these two reactants is the first step. The second step is the addition of \(\text{H}_3\text{O}^+ \). The sequence can be shown in different ways. Two ways are shown below.

\[\text{a. Li} + \text{b. CO} \rightarrow \text{H}_3\text{O}^+ \rightarrow \text{a. OH} \]

\[\text{a. Li} \rightarrow \text{b. CO} \rightarrow \text{1. H}_3\text{O}^+ \rightarrow \text{a. OH} \]