Multiple Choice

1. Choose the synthetic scheme that would not give the amine shown as the major product.

```
A = 1  B = 2  C = 3  D = 4  E = 3 +4
```

2. Predict the major product of the following reaction.

```
Br
HNO3  H2SO4  H2, Ni  Cl2  HCl, NaNO2  HBF4
```

3. Choose the order that has the following amines correctly arranged with respect to increasing basicity.

```
1  2  3
```

```
A 1 < 2 < 3  B 1 < 3 < 2  C 2 < 3 < 1  D 2 < 1 < 3  E 3 < 2 < 1
```
4. Identify where the amine 1 would be found in the following extraction procedure.

```
  | 1. add NaOH | 2. add ether |
  | 1. acidify with HCl | 2. add ether |
  | H₂O layer | ether layer |
  | A |
  | 1. add ether |
  | 1. basify with NaOH |
  | H₂O layer | ether layer |
  | B |
  | 1. basify with NaOH |
  | H₂O layer | ether layer |
  | C |
  | 1. add ether |
  | 1. basify with NaOH |
  | H₂O layer | ether layer |
  | D |
  | 1. add ether |
  | 1. basify with NaOH |
  | H₂O layer | ether layer |
  | E |
```

5. Choose the structure consistent with the name p-aminobenzoic acid.

```
A
B
C
D
E
```

6. Choose the number (n) of triphenylphosphine ligands necessary to give the following rhodium compound the noble gas configuration.

```
(Ph₃P)ₙRhCl
```

```
A = 0    B = 1    C = 2    D = 3    E = 4
```

7. Predict the major product when the carbohydrate mannose reacts with dry methanol.

```
Mannose
```

```
A
B
C
D
E
```
8. Choose the intermediate that is the result of oxidative addition in the mechanism of the Heck reaction.

![Heck Reaction Diagram](image)

9. Choose the most acidic hydrogen in the following compound.

![Compound Diagram](image)

10. Choose the structure that is identical to the Fischer projection formula for

![Fischer Projection Diagram](image)

Short Answer

11. Give the major product of the following reaction. 5 pts. (*J. Org. Chem. 2008, 73, 5651–5653*)

![Reaction Diagram](image)

12. Give the structure of the following Mannich reaction. 5 pts

![Mannich Reaction Diagram](image)
13. Give the reactant(s) in the following reaction sequence that would give the ketone shown below. 5 pts.

\[
? \xrightarrow{\text{Me-O}} \xrightarrow{\text{OH}} \xrightarrow{\text{H}^+} \text{heat} \xrightarrow{\text{Claisen condensation}} \begin{array}{c}
\text{?} \\
\text{H}_2\text{O}
\end{array}
\]

14. Give the reactant(s) that would give the following amine. 5 pts.

\[
? \xrightarrow{\text{1. cat. HA}} \xrightarrow{\text{2. NaBH}_3\text{CN}} \begin{array}{c}
\text{?} \\
\text{H}_2\text{C-N=NN}
\end{array}
\]

15. Propose a good mechanism for the following reaction. 10 pts

\[
\text{O} \xrightarrow{\text{?}} \text{H}_2\text{C-N=NN} \xrightarrow{\text{?}} \text{O} \quad \text{N=NN}
\]

Below is a synthesis of fentanyl, an analgesic 100 times more potent than morphine.

16. Suggest reactions (1) that could be used to convert benzylcyanide into the first intermediate \(A \) in the above scheme. (more than one reaction may be necessary). 5 pts

17. Give the structure of intermediate \(B \) in the above reaction scheme. 5 pts

18. Give a reaction mechanism for the conversion of \(C \) into \(D \). 10 pts

\[
\begin{align*}
\text{C} & \xrightarrow{\text{?}} \text{OEt} \xrightarrow{\text{HOEt}} \text{H}^+ \xrightarrow{\text{?}} \text{D} \\
\text{O} & \xrightarrow{\text{?}} \text{OEt} \xrightarrow{\text{HOEt}} \text{H}^+ \xrightarrow{\text{?}} \text{D}
\end{align*}
\]