# Differences

This shows you the differences between two versions of the page.

 phy131studiof15:lectures:chapter10 [2015/07/22 09:37]mdawber [Momentum] phy131studiof15:lectures:chapter10 [2015/09/28 09:10] (current)mdawber [A thin uniform plate] Both sides previous revision Previous revision 2015/09/28 09:10 mdawber [A thin uniform plate] 2015/09/24 21:10 mdawber [Rockets] 2015/09/24 21:00 mdawber [Center of mass] 2015/09/24 20:57 mdawber [10.P.005] 2015/09/24 20:55 mdawber [Momentum] 2015/07/22 09:37 mdawber [Momentum] 2015/07/22 09:33 mdawber created Next revision Previous revision 2015/09/28 09:10 mdawber [A thin uniform plate] 2015/09/24 21:10 mdawber [Rockets] 2015/09/24 21:00 mdawber [Center of mass] 2015/09/24 20:57 mdawber [10.P.005] 2015/09/24 20:55 mdawber [Momentum] 2015/07/22 09:37 mdawber [Momentum] 2015/07/22 09:33 mdawber created Line 21: Line 21: $F_{ave}=\frac{\Delta p}{\Delta t}=\frac{mv_{2}-mv_{1}}{\Delta t}$ $F_{ave}=\frac{\Delta p}{\Delta t}=\frac{mv_{2}-mv_{1}}{\Delta t}$ + ===== 10.P.005 ===== + + + ===== 10.P.011 ===== ===== Center of mass ===== ===== Center of mass ===== Line 47: Line 51: $\vec{P}=M\vec{v}_{CM}$ $\vec{P}=M\vec{v}_{CM}$ + + ===== 10.P.015 ===== + Line 117: Line 124: $\vec{x}_{CM}=\frac{1}{M}\int x\,​dm=\frac{1}{M}\int_{0}^{l}\int_{0}^{w}\rho_{A}x\,​dy\,​dx=\frac{1}{M}\frac{1}{2}\rho_{A}l^{2}w=\frac{l}{2}\hat{i}$ $\vec{x}_{CM}=\frac{1}{M}\int x\,​dm=\frac{1}{M}\int_{0}^{l}\int_{0}^{w}\rho_{A}x\,​dy\,​dx=\frac{1}{M}\frac{1}{2}\rho_{A}l^{2}w=\frac{l}{2}\hat{i}$ - $\vec{y}_{CM}=\frac{1}{M}\int y\,​dm=\frac{1}{M}\int_{0}^{l}\int_{0}^{w}\rho_{A}y\,​dy\,​dx=\frac{1}{M}\frac{w}{2}\rho_{A}l^{2}l=\frac{w}{2}\hat{j}$ + $\vec{y}_{CM}=\frac{1}{M}\int y\,​dm=\frac{1}{M}\int_{0}^{l}\int_{0}^{w}\rho_{A}y\,​dy\,​dx=\frac{1}{M}\frac{1}{2}\rho_{A}w^{2}l=\frac{w}{2}\hat{j}$ Line 228: Line 235: The key to rocket propulsion is that the momentum of the expelled gas is equal and opposite to the forward momentum of the rocket. This does not rely on any interaction with the external atmosphere. The key to rocket propulsion is that the momentum of the expelled gas is equal and opposite to the forward momentum of the rocket. This does not rely on any interaction with the external atmosphere. + + ===== 10.P.049 ===== + + ===== 10.P.045 ===== + + 