This shows you the differences between two versions of the page.

Both sides previous revision Previous revision Next revision | Previous revision Last revision Both sides next revision | ||

phy131studiof15:lectures:chapter12 [2015/10/10 03:25] mdawber [Properties of cross products] |
phy131studiof15:lectures:chapter12 [2015/10/12 09:19] mdawber [12.P.005] |
||
---|---|---|---|

Line 47: | Line 47: | ||

===== 12.P.008 ===== | ===== 12.P.008 ===== | ||

+ | ===== Equations of motion for rotational motion ===== | ||

+ | |||

+ | At the beginning of the course we derived, using calculus, a set of equations for motion under constant acceleration. | ||

+ | |||

+ | $v= v_{0}+at$ | ||

+ | |||

+ | $x= x_{0}+v_{0}t+\frac{1}{2}at^2$ | ||

+ | |||

+ | $v^{2}=v_{0}^2+2a(x-x_{0})$ | ||

+ | |||

+ | We can equally derive similar equations for our rotational quantities. Indeed as we can see that the relationships between the new rotational quantities we have now are exactly the same as those between the translational quantities we can simply rewrite the translational motion equations in terms of rotational variables. | ||

+ | |||

+ | $\omega= \omega_{0}+\alpha t$ | ||

+ | |||

+ | $\theta= \theta_{0}+\omega_{0}t+\frac{1}{2}\alpha t^2$ | ||

+ | |||

+ | $\omega^{2}=\omega_{0}^2+2\alpha(\theta-\theta_{0})$ | ||

===== 12.P.026 ===== | ===== 12.P.026 ===== | ||

Line 105: | Line 122: | ||

- | ===== Equations of motion for rotational motion ===== | ||

- | At the beginning of the course we derived, using calculus, a set of equations for motion under constant acceleration. | ||

- | $v= v_{0}+at$ | ||

- | |||

- | $x= x_{0}+v_{0}t+\frac{1}{2}at^2$ | ||

- | |||

- | $v^{2}=v_{0}^2+2a(x-x_{0})$ | ||

- | |||

- | We can equally derive similar equations for our rotational quantities. Indeed as we can see that the relationships between the new rotational quantities we have now are exactly the same as those between the translational quantities we can simply rewrite the translational motion equations in terms of rotational variables. | ||

- | |||

- | $\omega= \omega_{0}+\alpha t$ | ||

- | |||

- | $\theta= \theta_{0}+\omega_{0}t+\frac{1}{2}\alpha t^2$ | ||

- | |||

- | $\omega^{2}=\omega_{0}^2+2\alpha(\theta-\theta_{0})$ | ||

- | ===== 12.P.005 ===== | ||

Line 265: | Line 266: | ||

We should note that the distance $R$ is the distance of each mass with respect to the axis of rotation, which need not be the center of mass, and is not an intrinsic property of an object! | We should note that the distance $R$ is the distance of each mass with respect to the axis of rotation, which need not be the center of mass, and is not an intrinsic property of an object! | ||

+ | |||

+ | ===== 12.P.053 ===== | ||

+ | |||

===== Two weights on a thin bar ===== | ===== Two weights on a thin bar ===== |