Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
phy131studiof15:lectures:chapter3 [2015/07/27 16:20]
mdawber [3.P.003]
phy131studiof15:lectures:chapter3 [2015/08/31 08:47]
mdawber [Vectors - Multiplication by a scalar]
Line 27: Line 27:
  
 ===== 3.P.003 ===== ===== 3.P.003 =====
 +
 +===== 3.P.005 =====
  
 ===== Unit Vectors ===== ===== Unit Vectors =====
Line 69: Line 71:
 | $v_{Rx}=v_{1x}+v_{2x}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ | $\tan\theta_{R}=\frac{v_{Ry}}{v_{Rx}}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ | | $v_{Rx}=v_{1x}+v_{2x}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ | $\tan\theta_{R}=\frac{v_{Ry}}{v_{Rx}}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ |
 | $v_{Ry}=v_{1y}+v_{2y}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ | $v_{R}=\sqrt{v_{Rx}^2+v_{Ry}^2}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ | | $v_{Ry}=v_{1y}+v_{2y}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ | $v_{R}=\sqrt{v_{Rx}^2+v_{Ry}^2}$ <​html>&​nbsp;&​nbsp;&​nbsp;</​html>​ |
 +
 +===== 3.P.027 =====
 +
 +===== 3.P.042 =====
 +
 +===== 3.P.051 =====
 +
 +===== 3.P.062 =====
 +
 +
 +
  
 ===== Vectors - Multiplication by a scalar ===== ===== Vectors - Multiplication by a scalar =====
 +
 +Multiplication of a vector by a scalar can change the magnitude, but not the direction of the vector, ie. each component of the vector is multiplied by the scalar in the same way.
 +===== 3.P.071 =====
  
phy131studiof15/lectures/chapter3.txt ยท Last modified: 2015/08/31 09:05 by mdawber
CC Attribution-Noncommercial-Share Alike 3.0 Unported
Driven by DokuWiki