Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
phy131studiof15:lectures:finalp1sol [2015/12/02 09:34]
mdawber [Question 5]
phy131studiof15:lectures:finalp1sol [2015/12/02 09:36]
mdawber [Question 6]
Line 199: Line 199:
 ===== Question 6 ===== ===== Question 6 =====
  
-A. $e=\frac{W}{Q_{H}}$+{{phy141f12finalq8fig.png:​400}} 
 + 
 +The diagram shows the P-V diagram for a 40% efficient ideal Carnot engine. Assume the gas used in this Carnot engine is an ideal diatomic gas. 
 + 
 +A. (5 points) For every Joule of work obtained from the engine, how much heat needs to be added to engine? 
 + 
 +$e=\frac{W}{Q_{H}}$
  
 $Q_{H}=\frac{1}{0.4}=2.5\mathrm{J}$ $Q_{H}=\frac{1}{0.4}=2.5\mathrm{J}$
  
-B.$Q_{H}=W+Q_{L}$+B. (b) (5 points) For every Joule of work obtained from the engine how much heat is lost to the environment?​ 
 + 
 +$Q_{H}=W+Q_{L}$
  
 $Q_{L}=1.5\mathrm{J}$ $Q_{L}=1.5\mathrm{J}$
  
-C. $P_{B}V_{B}=nRT_{H}$+C. (5 points) At points B and D the gas in the system has the same volume, but different temperatures. If the gas at point D is at twice atmospheric pressure, what is the pressure of the gas at point B? 
 + 
 +$P_{B}V_{B}=nRT_{H}$
  
 $P_{D}V_{D}=nRT_{L}$ $P_{D}V_{D}=nRT_{L}$
Line 221: Line 231:
 $P_{B}=3.33P_{atm}$ $P_{B}=3.33P_{atm}$
  
-D. The expansion from B to C is adiabatic so $P_{B}V_{B}^{\gamma}=P_{C}V_{C}^{\gamma}$+D. (5 points) If the volume of the gas at point B is 1L what is the volume of the gas at point C? 
 + 
 +The expansion from B to C is adiabatic so $P_{B}V_{B}^{\gamma}=P_{C}V_{C}^{\gamma}$
  
 For a diatomic gas $\gamma=\frac{7}{5}$ For a diatomic gas $\gamma=\frac{7}{5}$
Line 237: Line 249:
 $V_{C}=3.6\mathrm{L}$ $V_{C}=3.6\mathrm{L}$
  
-E. $\Delta S=0\mathrm{\frac{J}{K}}$+E. (5 points) How much does the net entropy of the engine and the environment change for every Joule of work done by this Carnot engine? 
 + 
 + 
 +$\Delta S=0\mathrm{\frac{J}{K}}$
phy131studiof15/lectures/finalp1sol.txt · Last modified: 2015/12/02 09:36 by mdawber
CC Attribution-Noncommercial-Share Alike 3.0 Unported
Driven by DokuWiki