Differences

This shows you the differences between two versions of the page.

Link to this comparison view

phy141kk:lectures:37-18 [2018/12/05 09:53] (current)
kkumar created
Line 1: Line 1:
 +~~SLIDESHOW~~
  
 +====== Fall 2018: Lecture 37 - Post-MidTermII Concepts ======
 +
 +/*
 +
 +===== Video of lecture ====
 +
 +<​html>​
 +<video id="​video"​ width="​640"​ height="​360"​ controls="​true"/>​
 +<source src="​lecturevids/​phy141f13finallecture1.mp4"​ type="​video/​mp4"></​source>​
 +<source src="​lecturevids/​phy141f13finallecture1.webm"​ type="​video/​webm"></​source>​
 +
 +
 +<object width="​640"​ height="​384"​ type="​application/​x-shockwave-flash"​ data="​player.swf">​
 + <param name="​movie"​ value="​player.swf"​ />
 + <param name="​flashvars"​ value="​file=lecturevids/​phy141f13finallecture1.mp4"​ />
 +
 + </​object>​
 + 
 +
 +    </​video>​
 +</​html>​
 +
 +*/
 +===== Equations of motion for SHM =====
 +
 +$m\frac{d^{2}x}{dt^{2}}=-kx$
 +
 +$x=A\cos(\omega t+\phi)$ ​  
 +
 +$A$ is the amplitude, $\omega=\frac{2\pi}{T}=2\pi f$ and $\phi$ allows us to change the starting point of the motion.
 +
 +$\frac{dx}{dt}=v=-\omega A\sin(\omega t+\phi)$
 +
 +$\frac{d^{2}x}{dt^{2}}=a=-\omega^{2}A\cos(\omega t+\phi)$
 +
 +$-m\omega^{2}A\cos(\omega t+\phi)=-kA\cos(\omega t+\phi)$
 +
 +which is true if 
 +
 +$\omega^{2}=\frac{k}{m}$
 +
 +$T=2\pi\sqrt{\frac{m}{k}}$ ​
 +
 +===== Energy in SHM =====
 +
 +{{shmspringenergy.png}}
 +
 +$\frac{1}{2}kA^{2}=\frac{1}{2}kx^{2}+\frac{1}{2}mv^{2}$
 +
 +$v=\pm\sqrt{\frac{k}{m}(A^{2}-x^{2})}$
 +
 +===== Simple Pendulum =====
 +
 +{{simplependulum.png}}
 +
 +The restoring force above is $F=-mg\sin\theta$
 +
 +For small angles $\sin\theta=\theta$ so $F\approx-mg\theta$
 +
 +and using the relation $s=L\theta$ gives $F\approx-\frac{mg}{L}s$
 +
 +So:
 +$m\frac{d^2s}{dt^2}=-\frac{mg}{L}s$
 +
 +$f=\frac{\omega}{2\pi}=\frac{1}{2\pi}\sqrt{\frac{g}{L}}$
 +
 +$T=\frac{1}{f}=2\pi\sqrt{\frac{L}{g}}$
 +===== The Physical pendulum =====
 +**Any** object attached at a which is not at it's center of gravity can act like a pendulum.
 +
 +{{physicalpendulum.png}}
 +
 +$\tau = I\alpha$
 +
 +$I\frac{d^2\theta}{dt^2}=-mgh\theta$
 +
 +$T=2\pi\sqrt{\frac{I}{mgh}}$
 +
 +===== The Torsion pendulum =====
 +
 +A torsion pendulum has a restoring force provided by a [[http://​en.wikipedia.org/​wiki/​Torsion_spring|torsion spring]].
 +
 +The torque provided by the spring is 
 +
 +$\tau=-K\theta$
 +
 +$I\frac{d^{2}\theta}{dt^{2}}=-K\theta$
 +
 +so a torsion pendulum can execute simple harmonic motion ​
 +$\theta=\theta_{max}\cos(\omega t+\phi)$ with $\omega=\sqrt{\frac{K}{I}}$
 +
 +
 +===== Damping =====
 +
 +
 +The damping force opposes the motion and can sometimes be approximated as proportional to the speed 
 +
 +$F_{damping}=-bv$
 +
 +Newton'​s second law gives us 
 +
 +$ma=-kx-bv$
 +
 +or 
 +
 +$m\frac{d^{2}x}{dt^{2}}+b\frac{dx}{dt}+kx=0$
 +
 +The solution to this equation is of the form
 +
 +$x=Ae^{-\gamma t}\cos(\omega'​ t)$
 +
 +where 
 +
 +$\gamma=\frac{b}{2m}$ ​ and $\omega'​=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}}}$
 +
 +Depending on the ratio between the damping coefficient and restoring force, a system will display either [[http://​upload.wikimedia.org/​wikipedia/​en/​e/​e8/​Damping.svg|underdamping,​ overdamping or critical damping]].
 +
 +===== Driven harmonic motion =====
 +
 +If we subject an oscillator to an oscillatory force
 +
 +$F_{ext}=F_{0}\cos\omega t$
 +
 +the equation of motion is
 +
 +$ma=-kx-bv+F_{0}\cos\omega t$
 +
 +or
 +
 +$m\frac{d^{2}x}{dt^{2}}+b\frac{dx}{dt}+kx=F_{0}\cos\omega t$
 +
 +A solution to this equation is 
 +
 +$x=A_{0}\sin(\omega t+\phi)$
 +
 +where 
 +
 +$A_{0}=\frac{F_{0}}{m\sqrt{(\omega-\omega_{0}^{2})+b^{2}\omega^{2}/​m^{2}}}$
 +
 +$\phi_{0}=\tan^{-1}\frac{\omega_{0}^2-\omega^{2}}{\omega(b/​m)}$
 +
 +===== Waves =====
 +
 +If we freeze a wave at a certain time the displacement of the points can often be represented a sinusoidal function, $D(x)=A\sin\frac{2\pi}{\lambda}x$.
 +
 +{{wave.png}}
 +
 +If the wave moves so that it takes a time $T$, the period for a wavelength $\lambda$ to pass a point we can say that the velocity of a wave is $v=\frac{\lambda}{T}=f\lambda$.
 +
 +
 +===== Traveling waves =====
 +
 +In order to have a wave which at time $t=0$ has a displacement function $D(x)=\sin\frac{2\pi}{\lambda}x$ propagate with  $v$ we can write
 +
 +$D(x,​t)=A\sin\frac{2\pi}{\lambda}(x-vt)$
 +
 +which using $v=\frac{\lambda}{T}=f\lambda$ can be written
 +
 +
 +$D(x,​t)=A\sin(\frac{2\pi}{\lambda}x-\frac{2\pi t}{T})=A\sin(kx-\omega t)$
 +
 +$k$ is the wave number, $k=\frac{2\pi}{\lambda}$ and the angular frequency $\omega=2\pi f$
 +
 +The velocity of the waves propagation,​ which we call the phase velocity can be expressed in terms of $\omega$ and $k$
 +
 +$v=f\lambda=\frac{\omega}{2\pi}\frac{2\pi}{k}=\frac{\omega}{k}$
 +
 +===== Waves on a string =====
 +
 +{{stringparameters.png}}
 +
 +$v=\sqrt{\frac{F_{T}}{\mu}}$
 +
 +===== Speed of Sound =====
 +
 +{{soundspeed.png}}
 +
 +$v=\sqrt{\frac{B}{\rho}}$
 +
 +===== Intensity =====
 + 
 +
 +The intensity is the average power per unit area
 +
 +$I=\frac{\bar{P}}{S}$
 +
 +As a 3 dimensional wave propagates from a point the area through which the wave passes increases, when the power out put is constant, the intensity decreases as $\frac{1}{r^{2}}$
 +
 +$\frac{I_{2}}{I_{1}}=\frac{\bar{P}/​4\pi r_{2}^{2}}{\bar{P}/​4\pi r_{1}^{2}}=\frac{r_{1}^2}{r_{2}^{2}}$
 +
 +In order for the power output to be constant the amplitude must also decrease as $S_{1}A_{1}^2=S_{2}A_{2}^2$ implying $A\propto\frac{1}{r}$
 +
 +===== Standing Waves =====
 +
 +$\lambda=2l,​l,​2/​3l,​l/​2,​..$ etc.
 +
 +$f=\frac{v}{\lambda}=\frac{v}{2l},​\frac{v}{l},​\frac{3v}{2l},​2vl,​..$ etc.
 +
 +{{standingwaves.png}}
 +
 +===== Open and closed pipes =====
 +
 +{{organpipes.png}}
 +===== Loudness and decibels =====
 +
 +Our sensitivity to the loudness of sound is logarithmic,​ a sound that is ten time as intense sounds only twice as loud to us. The sound level $\beta$ is thus measured on a logarithmic scale in [[http://​en.wikipedia.org/​wiki/​Decibel|decibels]] is
 +
 +$\beta=10\log_{10}\frac{I}{I_{0}}$
 +
 +$I_{0}$ is the weakest sound intensity we can hear $I_{0}=1.0\times 10^{-12}\mathrm{W/​m^{2}}$
 +
 +
 +===== Beats=====
 +
 +
 +[[http://​www.phys.unsw.edu.au/​jw/​beats.html|Beats]] occur when two waves with frequencies close to one another interfere.
 +
 +If the two waves are described by
 +
 +$D_{1}=A\sin2\pi f_{1}t$
 +
 +and
 +
 +$D_{2}=A\sin2\pi f_{2}t$
 +
 +$D=D_{1}+D_{2}$
 +
 +$D=2A\cos2\pi(\frac{f_{1}-f_{2}}{2})t\sin2\pi(\frac{f_{1}+f_{2}}{2})t$
 +
 +===== Doppler Effect =====
 +
 +
 +A general formula for the doppler effect is
 +
 +$f'​=f\frac{(v_{sound}\pm v_{obs})}{(v_{sound}\mp v_{source})}$
 +
 +Top part of the $\pm$ or $\mp$ sign is for an source or observer moving towards each other, the bottom part is for motion away from each other.
 +
 +===== Thermal Equilibrium =====
 +
 +If two object with different temperatures are brought in to contact with one another thermal energy will flow from one to another until the temperatures are the same, and we then say that the objects are in thermal equilibrium.
 +
 +
 +The [[http://​en.wikipedia.org/​wiki/​Zeroth_law_of_thermodynamics|zeroth law of thermodynamics]] states that:
 +
 +"If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other."​
 +
 +
 +===== Thermal Expansion =====
 +
 +Most, but not all, materials expand when heated. The change in length of material due to linear thermal expansion is
 +
 +$\Delta l=\alpha l_{0}\Delta T$
 +
 +$\alpha$ is the coefficient of linear expansion of the material, measured in $\mathrm{(^{o}C)^{-1}}$
 +
 +The length of the object after it's temperature has been changed by $\Delta T$ is
 +
 +$l=l_{0}(1+\alpha\Delta T)$
 +
 +A material expands in all directions, and if we are interested in the volume changes of a rectangular object, that is isotropic, meaning it expands in the same way in all directions, then
 +
 +$\Delta V = \beta V_{0}\Delta T$
 +
 +$V_{0}=l_{0}w_{0}h_{0}$ ​ → $V=l_{0}(1+\alpha\Delta T)w_{0}(1+\alpha\Delta T)h_{0}(1+\alpha\Delta T)$
 +
 +$\Delta V=V-V_{0}=V_{0}(1+\alpha\Delta T)^{3}-V_{0}=V_{0}[3(\alpha\Delta T)+3(\alpha\Delta T)^{2}+(\alpha\Delta T)^{3}]$
 +
 +If $\alpha\Delta T << 1$ then $\beta \approx 3\alpha$
 +
 +===== Ideal Gas Law =====
 +
 +A mole of gas is a given number of molecules, Avagadro'​s number, $N_{A}=6.02\times 10^{23}$. If we have a certain mass $m$ of a gas which has a certain [[http://​en.wikipedia.org/​wiki/​Molecular_mass|molecular mass]] (measured in atomic mass units, $\mathrm{u}$,​ which are also the number of grams per mole.), the the number of moles $n$ is given by
 +
 +$n=\frac{m[\mathrm{g}]}{\textrm{molecular mass}[\mathrm{g/​mol}]}$
 +
 +and 
 +
 +$PV=nRT$ where $R=8.314\mathrm{J/​(mol.K)}$
 +
 +The ideal gas law can also be written in terms of the number of molecules
 +
 +$PV=nRT=\frac{N}{N_{A}}RT=NkT$
 +
 +where $k=\frac{R}{N_{A}}=\frac{8.314\mathrm{J/​(mol.K)}}{6.02\times 10^{23}}=1.38\times 10^{-23}\mathrm{J/​K}$ is the [[http://​en.wikipedia.org/​wiki/​Boltzmann_constant|Boltzmann Constant]].
 +
 +
 +===== The Maxwell-Boltzmann distribution =====
 +
 +The average kinetic energy of molecules in an monatomic ideal gas is
 +
 +$\bar{K}=\frac{1}{2}m\bar{v^{2}}=\frac{3}{2}kT$
 +
 +$f(v)=4\pi (\frac{m}{2\pi k T})^{\frac{3}{2}}v^{2}e^{-\frac{1}{2}\frac{mv^{2}}{kT}}$
 +
 +
 +===== Heat transfer =====
 +
 +Conduction-Primary mechanism for solids in thermal contact with each other. The heat flow $\Delta Q$ during a time interval $\Delta t$ in a conductor of length $l$ and area $A$ which connects two object'​s which have temperature $T_{1}$ and $T_{2}$ is
 +
 +$\frac{\Delta Q}{\Delta t}=kA\frac{T_{1}-T_{2}}{l}$
 +
 +which in differential form is
 +
 +$\frac{dQ}{dt}=-kA\frac{dT}{dx}$
 +
 +Convection-Movements of molecules in a gas or liquid.
 +
 +Radiation-Electromagnetic transmission of heat, does not require a medium. ​
 +
 +$\frac{\Delta W}{\Delta t}=\epsilon\sigma A T^{4}$
 +
 +$\sigma=5.67\times10^{-8}W/​m^{2}K^4$ and $\epsilon$ is the emissivity of the surface, a perfect surface for emission or asborption (a black surface) has an emissivity of 1, whereas a shiny surface that neither absorbs or transmits would have an emissivity of zero. Most materials are somewhere in between these two limits.
 +
 +===== Specific Heat Capacity=====
 +
 +A quantity of heat, $Q$, flowing into an object leads to a change in the temperature of the object, $\Delta T$, which is proportional to it's mass $m$ and a characteristic quantity of the material, it's specific heat, $c$
 +
 +$Q=mc\Delta T$
 +
 +We can see that heat flowing in to an object is positive $\Delta T>0$ and heat flowing out is negative $\Delta T < 0$
 +
 +The specific heat is the [[http://​en.wikipedia.org/​wiki/​Heat_capacity|heat capacity]] per a unit of mass, in SI the units of specific heat are $\mathrm{\frac{J}{kg.K}}$.
 +
 +===== Isolated Systems =====
 +
 +The assumption of an isolated system is very useful in problem solving as it says that the sum of the heat transfers in the system must be zero.
 +
 +$\Sigma Q = 0$
 +
 +In a system where the different objects start at different temperatures,​ but eventually come to an equilibrium temperature $T$
 +
 +$\Sigma Q = m_{1}c_{1}(T-T_{i1})+m_{2}c_{2}(T-T_{i2})+..$
 +
 +
 +===== Latent Heat =====
 +
 +Phase changes from a low temperature phases to a high temperature phase require a certain amount of heat, called the [[http://​en.wikipedia.org/​wiki/​Latent_heat|latent heat]].
 +
 +The latent heat of of fusion, $L_{f}$, refers to a change from solid to liquid and the latent heat of vaporization,​ $L_{v}$, refers to a change from liquid to gas. The heat required to change a mass $m$ of a substance from one phase to another is 
 +
 +$Q=mL$
 +
 +During a change from one phase to another the temperature of the system remains constant.
 +
 +===== First Law of Thermodynamics =====
 +
 +The [[http://​en.wikipedia.org/​wiki/​First_law_of_thermodynamics|first law of thermodynamics]],​ dictates how internal energy, heat and work are related to each other. For a closed system the first law states that the change in the internal energy of a system, $\Delta E_{int}$, is the sum of the heat added **to** the system $Q$ and the net work done **by** the system $W$.
 +
 +$\Delta E_{int}=Q-W$
 +
 +The table shows some of the results that apply to a particular kind of thermal process
 +
 +^Process^Constant<​html>&​nbsp;&​nbsp;&​nbsp;&​nbsp;</​html>​^ΔE<​sub>​int</​sub>​^Q^W^
 +| Isothermal | T | 0 | Q=W | W=Q |
 +| Isobaric | P | Q-PΔV<​html>&​nbsp;&​nbsp;&​nbsp;&​nbsp;</​html>​ | ΔE<​sub>​int</​sub>​+PΔV<​html>&​nbsp;&​nbsp;&​nbsp;&​nbsp;</​html>​ | PΔV |
 +| Isovolumetric<​html>&​nbsp;&​nbsp;&​nbsp;&​nbsp;</​html>​ | V | Q | ΔE<​sub>​int</​sub>​ | 0 |
 +| Adiabatic || -W | 0 | -ΔE<​sub>​int</​sub>​ |
 +
 +===== Path dependence of the work =====
 +
 +For an ideal gas $P=\frac{nRT}{V}$,​ so for an isothermal process
 +
 +$W=\int_{V_{A}}^{V_{B}}P\,​dV=nRT\int_{V_{A}}^{V_{B}}\frac{dV}{V}=nRT\ln\frac{V_{B}}{V_{A}}$
 +
 +In an isobaric process the pressure is constant so the work is 
 +
 +$W=\int_{V_{A}}^{V_{B}}P\,​dV=P(V_{B}-V_{A})=P\Delta V$
 +
 +and if the system is an ideal gas
 +
 +$W=P(V_{B}-V_{A})=nRT_{B}(1-\frac{V_{A}}{V_{B}})=nRT_{A}(\frac{V_{B}}{V_{A}}-1)$
 +
 +In an isovolumetric process the work done is zero
 +
 +$W=0$
 +
 +
 +===== Molar Specific Heat for Gases =====
 +
 +For an ideal gas $c_{P,​m}-c_{V,​m}=R$
 +
 +The [[http://​en.wikipedia.org/​wiki/​Equipartition_theorem|equipartition theorem]] can be used to explain the higher heat capacity of more complicated gases. The equipartition theorem states that energy is equally shared between the different degrees of freedom the molecules in the gas have.
 +
 +{{degreesoffreedom.png?​400}}
 +
 +Each degree of translational or rotational freedom contributes $\frac{1}{2}R$ to the molar specific heat at constant volume $c_{V,m}$
 +
 +===== Quasistatic adiabatic expansion of an ideal gas =====
 +
 +$PV^{\gamma}=\mathrm{constant}$
 +
 +===== The second law of thermodynamics =====
 +
 +**Heat cannot spontaneously flow from a cold object to a hot one, whereas the reverse, a spontaneous flow of heat from a hot object to a cold one, is possible.**
 +
 +or
 +
 +**No device is possible whose sole effect is to transform a given amount of heat directly in to work.**
 +
 +
 +===== Heat Engine and Refrigerators =====
 +
 +$Q_{H}=W+Q_{L}$
 +
 +{{heatengine.png}}
 +{{refrigerator.png}}
 +
 +$e=\frac{W}{Q_{H}}$
 +
 +$e=\frac{W}{Q_{H}}=\frac{Q_{H}-Q_{L}}{Q_{H}}=1-\frac{Q_{L}}{Q_{H}}$
 +
 +===== Carnot Cycle =====
 +
 +{{carnot.png?​400}}
 +
 +
 +$e=1-\frac{T_{L}}{T_{H}}$
 +
 +===== Otto Cycle =====
 +
 +{{otto.png}}
 +
 +$e=1-(\frac{V_{A}}{V_{B}})^{1-\gamma}$
 +
 +===== Entropy =====
 +
 +We will define the change in entropy in a reversible process at constant temperature as 
 +
 +$\Delta S =\frac{Q}{T}$
 +
 +If we want to treat non-constant temperature cases we can express the change of entropy in differential form
 +
 +$dS=\frac{dQ}{T}$
 +
 +and then the change in entropy in going from state $a$ to $b$ will be
 +
 +$\Delta S =S_{b}-S_{a}=\int_{a}^{b}\,​dS=\int_{a}^{b}\frac{dQ}{T}$
phy141kk/lectures/37-18.txt · Last modified: 2018/12/05 09:53 by kkumar
CC Attribution-Noncommercial-Share Alike 3.0 Unported
Driven by DokuWiki